Práctica 5: Muestreo – Correlación entre variables aleatorias

- **1.** Sean (x_1, x_2, \dots, x_n) n variables aleatorias todas con igual función de densidad de probabilidad de media μ_x y σ_x^2 . Se define una nueva variable aleatoria $y = \frac{1}{n} \sum_{i=1}^n x_i$
 - a) Encuentre una expresión para la media de la variable y.
 - b) Encuentre una expresión para la varianza de y.
 - c) Basándose en los puntos anteriores, analice si y puede considerarse como un buen estimador de la media de x.
- **2.** Se toma una muestra de dimensión 8 de la variable aleatoria x, resultando los siguientes valores: 2.97, 3.02, 3.06, 3.01, 2.98, 3.06, 2.95, 3.03.
 - a) Calcule el estimador de la media de x, es decir el estimador de la media de la población de la cual se ha extraído la muestra.
 - b) Encuentre una expresión para la media del estimador de la media. ¿Se puede obtener un valor numérico?
 - c) Calcule el estimador de la varianza de x, es decir el estimador de la varianza de la población de la cual se ha extraído la muestra.
 - d) Calcule el estimador de la varianza del estimador de la media de x.
 - e) Encuentre una expresión para la varianza del estimador de la media. ¿Se puede obtener un valor numérico?
- **3.** La siguiente tabla muestra los registros de temperaturas obtenidos en dos lugares del planeta a lo largo de los 5 años.
 - a) Estime las medias y sus desviaciones estándar para cada sitio.
 - b) Repite el punto a), suponiendo que las desviaciones estándar (errores) del Sitio 1 son equivalentes al 5% de la medición, mientras que las del Sitio 2 son constantes e iguales a 0.5.
 - c) Compare los resultados de los puntos anteriores y pondere la relevancia del promedio pesado en cada caso.

	Temperatura [C]	
Año	Sitio 1	Sitio 2
2000	22.08	25.30
2001	23.70	29.07
2002	26.03	27.45
2003	25.70	25.87
2005	32.31	26.43

4. Se quiere estimar la masa de una partícula para lo cual se toman las mediciones realizadas por 6 laboratorios. Como cada laboratorio aplica una técnica diferente, las precisiones (desviaciones estándar) de sus mediciones también son diferentes. La tabla siguiente presenta la estimación de la masa y la desviación estándar obtenida por cada laboratorio.

Laboratorio	Medida [MeV]	Desv. Est. [MeV]
1	98.1	0.3
2	97.4	0.2
3	98.9	0.4
4	97.4	0.4
5	91.1	0.8
6	89.3	1.3

- a) A partir de la tabla, calcule un valor representativo de la masa de la partícula sin considerar las desviaciones estándar (promedio simple). Estime también la desviación estándar de ese valor.
- b) Calcule un valor representativo de la masa que considere las desviaciones estándar de cada laboratorio (promedio pesado). Estime también la desviación estándar de ese valor.
- c) Realice un gráfico 'medida vs laboratorio', donde aparezcan las desviaciones estándar aparezcan representadas como barras de error.
- d) Sobre el gráfico anterior, represente mediante líneas rectas horizontales los valores obtenidos en los puntos a) y b).
- e) Analice los resultados que aparecen en el gráfico.
- **5.** El archivo P5E4 2022.txt adjunto contiene mediciones de las coordenadas de un punto fijo en el plano, la primera columna tiene las mediciones de la coordenada X y la segunda las mediciones de la coordenada Y.
 - a) Realice un gráfico de dispersión 'coordenada X vs coordenada Y'.

- b) El enunciado dice que el punto está fijo, entonces a qué se debe que las mediciones muestren esa dispersión en el gráfico.
- c) Calcule un vector con los estimadores de las coordenadas del punto. Represente en el gráfico los valores calculados.
- d) Calcule la matriz de var-covar de las coordenadas del punto. Represente en el gráfico los valores de las desviaciones estándar de las mediciones.
- e) Interprete la relación entre los estimadores de las desviaciones estándar y los errores de medición de las coordenadas de la tabla original.
- f) Calcule un vector con los estimadores de las desviaciones estándar de los estimadores calculados en el punto a). Interprete el significado de estos valores.
- g) En base a la matriz obtenida en el punto d), grafique la elipse de covarianza sobre el gráfico realizado en el punto a).
- **6.** Se miden los ángulos entre tres puntos y el origen utilizando el mismo instrumento que tiene una desviación estándar (precisión) σ . El objetivo final es determinar los ángulos α , β y un tercer ángulo definido por la relación $\gamma = \alpha + \beta$. Se aplican dos procedimientos representados por las figuras que siguen.

Procedimiento 1: se miden simultáneamente los ángulos A1, A2 y A3 a los puntos P1, P2 y P3 respectivamente.

Procedimiento 2: en un primer paso se miden simultáneamente los ángulos A1 y A2, a los puntos P1 y P2. En un segundo paso se miden simultáneamente los ángulos B2 y B3, a los puntos P2 y P3.

- a) Calcule la matriz de var-covar del vector $(\alpha \ \beta \ \gamma)'$ para el Procedimiento 1.
- b) Calcule la matriz de var-covar del vector $(\alpha \quad \beta \quad \gamma)'$ para el Procedimiento 2.
- c) Compare y analice los resultados obtenidos en los puntos anteriores.

