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The Galton Board with Pascal's Triangle is
a probability demonstrator providing a
visualization of math in motion. It
displays centuries old mathematical
concepts in a innovative device. It
incorporates  Sir  Francis  Galton's
(1822-1911) invention from 1873 that

illustrated

the binomial distribution,

Sir Francis Galton

which for a large number of rows of
hexagons and a large number of beads approximates the
normal distribution, a concept known as the Central Limit
Theorem. According to the Central Limit Theorem, more
specifically, the de Moivre (1667-1754)- Laplace (1749-1827)
theorem, the normal distribution may be used as an
approximation to the binomial distribution under certain
conditions. The binomial distribution is altered by the
number of rows of hexagons, causing proportional
changes to the standard deviation of the resulting
bell-shaped curve of beads that land in the bins.

When rotated on its axis, the 6,000 steel beads cascade
through rows of symmetrically placed hexagons in the Galton
Board. When the device is level, each bead bounces off the
hexagons with equal probability of moving to the left or right.
As the beads settle into the bins at the bottom of the board,
they accumulate to approximate a bell-shaped histogram.
Printed on the lower part of the board is the normal
distribution or bell curve, as well as the average and standard
deviation lines relative to that distribution. The bell curve, also
known as the Gaussian distribution (Carl Friedrich Gauss,
1777-1855), is important in statistics and probability theory. It
is used in the natural and social sciences to represent random
variables, like the beads in the Galton Board. You can also see
the Y-axis and X-axis descriptions, and numbered bins with
expected percentage and number of beads.

Printed on the top of the board are formulas for the
standard deviation of a sample, normal distribution and the
binomial expansion.

Overlaid on the hexagons is Pascal's triangle (Blaise Pascal,
1623-1662), which is a triangle of numbers that follows the

rule of adding the two numbers above
to get the number below. The number
at each hexagon represents the
number of different paths a bead could
travel from the top hexagon to that
hexagon. It also shows the Fibonacci
numbers (Leonardo Fibonacci, 1175-1250),
which are the

sums of specific

Blaise Pascal

diagonals in Pascal's triangle. Within
Pascal's triangle, mathematical properties and patterns are
numerous. Those include: natural numbers, row totals,
powers of 11, powers of 2, triangular numbers, Star of
David theorem, and the hockey stick pattern. Other
patterns in Pascal’s triangle include prime numbers; square
numbers; binary numbers; Catalan numbers; binomial
expansion; fractals; golden ratio; and Sierpinkski's triangle.

Among the 6,000 steel beads, there is one golden bead,
which identifies a single random outcome. With the
percentage estimates of the probability that the golden
bead will land in a specific bin, you can witness those
probabilities with each flip of the Galton Board.

Embedded in this Galton Board are many statistical
and mathematical concepts including probability
identically distributed (IID)
random variables, the normal or bell-shaped curve, the
Limit Theorem (the de
theorem), the binomial distribution, also known as the
Bernoulli (1655-1705) distribution, regression to the

mean, the law of large numbers, probabilities such as

theories, independent

Central Moivre-Laplace

coin flipping and stock market returns, the random
walk, the Gambler's Fallacy, the law of frequency of
errors and what Sir Francis Galton referred to as the

“law of unreason.”

In his book Natural Inheritance (1889), Sir Francis Galton
colorfully described the apparatus he created to reveal
the order in apparent chaos. The following is a modified
excerpt from that book. The text has been updated to
correspond to the terminology used to describe our
Galton Board.



The Charms of Statistics

“It is difficult to understand why statisticians commonly limit
their inquires to Averages, and do not revel in more
comprehensive views. Their souls seem as dull to the charm
of variety as that of the native of one of our flat English
counties, whose retrospect of Switzerland was that, if its
mountains could be thrown into its lakes, two nuisances
would be got rid of at once. An Average is but a solitary fact,
whereas if a single other fact be added to it, an entire Normal
Scheme, which nearly corresponds to the observed one,
starts potentially into existence.

Some people hate the very name of statistics, but | find
them full of beauty and interest. Whenever they are not
brutalized, but delicately handled by the higher methods,
and are warily interpreted, their power of dealing with
complicated phenomena is extraordinary. They are the only
tools by which an opening can be cut through the
formidable thicket of difficulties that bars the path of those
who pursue the Science of man.”

Mechanical lllustrations of the Cause of the Curve

)

“The Curve of Frequency, and that of

Distribution, are convertible: therefore,
if the genesis of either of them can be
made clear, that of the other becomes

also intelligible. | shall now illustrate the
origin of the Curve of Frequency, by
means of an apparatus (shown here)
that mimics in a very pretty way the
which

conditions on Deviation

depends.”
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Our design of the Galton Board is
constructed of a plastic frame. A
reservoir is designed into the top of the

board. Below the outlet of the funnel

Galton’s orginal
drawing (1889)

stands a succession of rows of hexagons,
similar to Galton's pegs, stuck squarely
into the back of the board, and below these again are a series
of bins, or vertical compartments. A charge of 6,000 steel beads
is enclosed in the board. When the board is flipped
“topsy-turvy”, all the beads run to the upper end into the
reservoir; then, when it is turned back into its working position,
the desired action commences. The borders of the reservoir
have the effect of directing all the beads that had collected at

the upper end of the frame to run into the mouth of the funnel.

“The beads pass through the funnel and scamper deviously
down through the pegs in a curious and interesting way; each
of them darting a step to the right or left, as the case may be,
every time it strikes a peg [hexagon]. The pegs are disposed in
a quincunx fashion, so that every descending bead strikes
against a peg in each successive row. The cascade issuing
from the funnel broadens as it descends, and, at length every
bead finds itself caught in a bin immediately after freeing
itself from the last row of pegs. The outline of the distribution
of beads that accumulate in the bins approximates to the
Curve of Frequency, and is closely of the same shape
however often the experiment is repeated.”

“The principle on which the action of the apparatus
depends is, that a number of small and independent
accidents befall each bead in its career. In rare cases, a long
run of luck continues to favor the course of a particular
bead towards either outside bin, but in the large majority of
instances the number of accidents that cause Deviation to
the right, balance in a greater or less degree those that
cause Deviation to the left. Therefore most of the beads
find their way into the bins that are situated near to a
perpendicular line drawn from the outlet of the funnel, and
the Frequency with which beads stray to different distances
to the right or left of that line diminishes in a much faster
ratio than those distances increase.”

Order in Apparent Chaos
“l know of scarcely anything so apt to impress the
imagination as the wonderful form of cosmic order
expressed by the “Law of Frequency of Error.” The law
would have been personified by the Greeks and deified, if
they had known of it. It reigns with serenity and in complete
self-effacement amidst the wildest confusion. The huger
the mob, and the greater the apparent anarchy, the more
perfect is its sway. It is the supreme law of Unreason.
Whenever a large sample of chaotic elements are taken in
hand and marshaled in the order of their magnitude, an
unsuspected and most beautiful form of regularity proves
to have been latent all along. The tops of the marshaled
bins form a flowing curve of invariable proportions; and
each element, as it is sorted into place, finds, as it were, a
pre-ordained niche, accurately adapted to fit it. If the
measurement at any two specified Grades in the bin are
known, those that will be found at every other Grade,
except towards the extreme ends, can be predicted in the
way already explained, and with much precision.”
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(a+b)*=1a’+2ab +1b°

(L+R)*= 117+ 3R + 3LR 7+ IR?
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o Standard Deviation Formula

How to calculate the standard deviation of a sample data set:

1. Calculate the mean of your data set (X = (> x;)/n ), which is the
estimate of x in the normal distribution formula.

2. Subtract the mean from each of the sample data values ( x;) and list
the differences. x/'s are samples of z in the normal distribution formula.
3. Square each of the differences (X - x; ) from the previous step and
make a list of the squares.

4. Add the squares together.

5. Subtract one from the number of data values ( n ) you started with.
6. Divide the sum from step four by the number from step five.

7. Take the square root of the number from the previous step. This is
the standard deviation of the sample ( S, ), which is the estimate of ¢ in
the normal distribution.

—5_—

9 Normal Distribution Formula

1 _L(XJ)Q
fog) = ——=e 27
o\2r

In probability theory, a normal distribution is a type of continuous
probability distribution for a real-valued random variable. Shown
here is the general form of its probability density function ( f(x) ).
Normal distributions are important in statistics and are often used in
the natural and social sciences to represent real-valued random
variables whose distributions are not known. Included in the formula
is the constant Pi ( 7t = 3.142 ) which is the ratio of a circle's
circumference to its diameter. Also included is Euler's number ( e =
2.718 ) which is the base of the natural logarithm. The Independent
Identically Distributed (IID) Central Limit Theorem states that the
random variable x will be normally distributed as the sample size
becomes large and sigma is finite.

(a+b)*=1a’+2ab +1b’

e Binomial Theorem (1 g)’=11’+31°r + 3LR?+ 1R}
The Binomial Theorem describes the algebraic expansion of powers
of a binomial. Pascal's triangle defines the coefficients which appear
in binomial expansions. That means the n' row of Pascal's triangle
comprises the coefficients of the expanded expression of the
polynomial (a + b)". For the Galton Board, the binomials are left and
right (L + R)".

The expansion of (a + b)" is:

(a +b)"=x,a" + x;a™'b + x,a"?b? + ... + x,;ab™! + x,b"

where the coefficients of the form x, are precisely the numbers that
appear in the k™ entry of the n™ row of Pascal’s triangle (k and n
counting starts at 0). This can be expressed as: Xﬁ(ﬂ),

i.e.,“n choose k". The first hexagon on the Galton Board is ( 8 ) followed
below by ((1]) and ({)

Examples of binomial expressions are shown for (a + b)" forn=2 and
(I + r)" for n = 3. The numbers in each hexagon are the number of
paths that a bead can take to arrive at that location.

Q Pascal’s Triangle

Pascal's Triangle is a triangle of numbers that follow the rule of adding
the two numbers above to get the number below. This pattern can
continue endlessly. Blaise Pascal (1623-1662) used the triangle to
study probability theory, as described in his mathematical treatise
Traité du triangle arithmétique (1665). The triangle’s patterns translate
to mathematical properties of the binomial coefficients.

e Fibonacci Numbers and the Golden Ratio

The sum of the numbers on the diagonal shown on Pascal’s Triangle
match the Fibonacci numbers. The sequence progresses in this order:
1,1, 2, 3,5, 8, 13, 21, 34, 55, 89 and so on. Each number in the
sequence is the sum of the previous two numbers. For example:
2+3=5; 3+5=8; 5+8=13; 8+13=21... Leonardo Fibonacci (1175-1250)
popularized these numbers in his book Liber Abaci (1202). As you
progress through the Fibonacci numbers, the ratios of consecutive
Fibonacci numbers approach the Golden Ratio of 1.61803398..., but
never equals it. For example: 55/34=1.618; 89/55=1.618 and
144/89=1.618. This Galton Board rectangle has side lengths in the
Golden Ratio of 1:1.618.



G Row Totals

The sum of the numbers in each row is shown here and each total
doubles on subsequent rows. In addition, the total of the squares of the
entries of a row equals the middle entry of that row number times two.
For example, if you sum the squares of the entries in row 4 (12 + 42 + 62 +
42 + 12) that equals 70, which is also the middle entry of row 8.

0 Row Numbers

The 14 rows are numbered, with the first row desginated as n=0 and first
entry in each row as k=0. Fourteen rows are large enough so the resulting
binomial distribution is a good discrete approximation to the continuous
normal distribution.

0 Star of David Theorem

The Star of David theorem says the two sets of three numbers
surrounding a number have equal products. In the example shown, the
number 5 is surrounded by, in sequence, the numbers 1, 4, 10,15, 6, 1,
and taking alternating numbers, we have 1x10x6 = 4x15x1.

o Powers of 11

If you collapse each row into a single number by taking each element as
a digit (and carrying over to the left if the element has more than one
digit) you get the powers of eleven: 1, 11, 121,1331, 14641, 161051...

@ Powers of 2

The sum of numbers in a row is equal to 2" where n equals the row
number.

m Quincunx Pattern

The hexagons on the board are in a Quincunx pattern, which is an
arrangement of five objects with four at the corners of a square or
rectangle and the fifth at its center.

@ Diagonals and Triangular Numbers

The diagonals contain the figurate numbers of simplices, with the left
and right edges containing only 1's. The subsequent diagonals contain
natural or counting numbers, then triangular numbers (number of dots
in an equilateral triangular arrangement), then tetrahedral numbers
(triangular pyramidal numbers), then pentatope numbers followed by
the 5, 6, and 7 simplex numbers. The square of each natural number is
equal to the sum of a pair of adjacent entries on the third diagonal
(Triangular Numbers). Example: 72 =49 =21 + 28

@ Hockey Stick Pattern

The sum of the numbers in a diagonal, starting from the edge with 1, is equal
to the number in the next diagonal below. Outlining these numbers reveals a
hockey stick pattern, as seen herein 1+ 10 + 55 = 66.

@ Probability Density

The probability density f(x) is the relationship between observations
and their probability. It defines the probability of occurrence of a
discrete random variable within a particular range of continuous
random variables. One very important probability density function is

that of a Gaussian, or normal, random variable which looks like a
bell-shaped curve. These f{x) values assume a normal distribution
with a sigma (o) of 1.

@ Bell Curve

The normal distribution, often referred to as the "bell curve”, is the most
widely known and used of all probability distributions. Because the
normal distribution approximates many natural phenomena so well, it
has developed into a standard of reference for numerous probability
problems. Several sets of data follow the normal distribution, such as the
heights of adults, the weights of babies, classroom test scores, monthly
returns of the stock market and the beads in the Galton Board.

Bin Numbers, Expected Percentages and
Exptected Beads
Bins are numbered so the location of the golden bead can be easily
identified and recorded. Expected percentage of outcomes and
expected number of beads per bin base on 6,000 beads.

@ Number of Beads

This scale provides an estimate of the number of beads that are
expected to land in each bin based on the binomial distribution.

@ Golden Bead @

Among the 1.0 mm steel beads is a 2.2 mm golden bead. This
bead demonstrates a single random outcome.

@ Steel Beads

bead represents an independent and identically
distributed (IID) random variable that falls from the reservoir
through a fixed pattern of hexgons. When all 6,000 steel beads are
collected in the bins they form a similar distribution every time. The
discrete binomial distribution of beads closely approximates the
continuous normal distribution.

Each steel

@ Standard Deviation Line

The standard deviation ( ¢ ) is a measure of how closely all of the data
points are gathered around the mean ( # ). The shape of a normal
distribution is determined by the mean and the standard deviation.
About 68% of the data (beads) in a bell curve fall within one standard
deviation of the mean. About 95% fall within two standard deviations
and about 99.7% fall within three standard deviations. The standard
deviation ( ¢ ) of this 14-row binomial distribution is 1.87 bead bins.
The 15 bead bins span a range of 8 standard deviations (15/1.87 = 8).

@ X-axis

The scale shows x values from p-46 to p+40 and the percentages
and numbers of beads that are expected to be between the
standard deviations.



Galtsn Board

Binomial Distribution of Beads

Since there are approximately 6,000 beads to start
with and when the Galton is level there is a 50%
chance the beads will go left or right at each hexagon,
this illustration shows the expected beads that will
travel through each channel around the hexagons. At
the first hexagon, which is considered row 0, 3,000
beads should go left and 3,000 beads should go right
(assuming exactly 6,000 beads). If you follow the
splitting of the beads each time you can see how
many beads are expected to land in each bin on the

last row of Pascal’s Triangle.
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For the Galton Board, the Pascal's Triangle numbers for
row n can be interpreted as the number of paths to get
to the k™ location of row n after having gone through
n-1 rows. For example, for row 4, the numbers are 1, 4,
6, 4, 1, meaning that there are 1, 4, 6, 4, 1 paths to get to
the five hexagonal pegs of row 4 after passing thru row
3 that has 4 hexagonal pegs. For 6,000 beads, there
would be 6x6,000/16 = 2250 beads hitting the center

pegin row 4.
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000€
000€
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9284 422 105 12
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967 483 161 32 3

1160 725 322 97 18 1

943 524 209 57 10 1

1100 733 367 133 33 5 1
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Binomial Expansion
n!
The binomial coefficient (ﬂ) = k!(nk)! appears as the

ki entry in the n" row of Pascal's triangle (counting

starts at 0). Each entry is the sum of the two above it.

The expansion is also given by the following formula:

n

(a_|_b)nzz E an—kbk

k=0
(ath)’=| 1

(a+b)'= 1a + 1b
(a+bh)?=| 1a2 | +| 2ab |+ 1b?
(a+b)*=| 1a3 | +|3a?b |+ 3ab? +| 1b®
(a+b)*= | 1a* +|4a’b * 6ah? + 4ab® +| 1b*
(a+b)*= | 1a°  + 5a%h + 10a’b? + 10a%b® + S5ab* + | 1b°®
(a+b)®= 1a¢ +|6a’h + 15a‘b? + 20a’h* + 15ah* + Gabs +  1b®
(a+b)’ = | 1a’ | + 7a’b + 21ah? + 35a‘bh® + 35a%h* + |21a%hs +  T7ah® + 1b’
(a+b)® = | 1a® + 8a’b|+ 28ah? + 56a’h* + |70a‘h* + 56a°bs + 28a’h¢ + 8ab’| + 1b?®
(a+h)°= | 1a°  + 9ath + 36a’h? + 8dash® + 126a°h¢ + 126a'bs| + 84a’hs| + |36a?b’| + |9ab®|+ | 1b°
(a+h)"®= 4a™ + 10a°h + 45a’h? + 120a’b* + 210ah* + 252a°b° + 210a'b° + 120a°h’ + 45a’h® + 10ab® + 1b"°
(a+b)" = 4a’ | + 11a™b + 55a°h? + 165a%h*| + 330a’h¢ + 462a’h’ + 462a’h¢ + 330a‘b’| + 165a°b® + 55azh® + 11ab™ + 1b"
(a+bh)?= 4a'? + 12a"b + 66a"h? + 220a°h* + 495a’h‘ + 792a’hs + 924a’h¢ + 792a°h’ + 495a‘b* + 220a°h° + 66a’h'® + 12ab" + qb"2

(a+h)® = 1qa' + 13a™b + 78a'b? + 286a"b’ + 715a°h* + 1287a%h° + 1716a’b¢ + 1716ah’ + 1287a°b* + 715a‘b® + 286a°b® + 78ah'! + 13ab™ + 1qp'3
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Combinatorics

Pascal's Triangle is also an "n choose k" triangle like this
one. Note how the top row is row zero and also the
leftmost column is column zero. Each entry can be
designated as shown in this illustration.

1 -{(3) (7)) 1G) (G) [(E) ([(G) () [(G) [(5) 1(5) (Ge) [Ga
12--{(3) (7)) [(Z) [(3) (%) () [(5) (F) [(5) [(5) (Ga) [GR) (2

s-05) (3) (3) () (3 ) () 15) () 5 G0 @
o) Bl L L) Kal Qed Gl Ul el Ued Qub Sl Rl |

0 10 1 1 1
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Sierpinski Triangle

The Sierpinski Triangle is a very interesting mathematical
structure that is a fractal (a mathematical curve whose
shape retains the same general pattern of irregularity,
regardless of how high it is magnified), with the overall
shape of an equilateral triangle formed by starting with
an equilateral triangle and recursively (a rule that is
repeated) subdividing the triangle into smaller
equilateral triangles. To create this pattern, start with an
equilateral triangle, then identify the midpoints of its
sides and connect them to form four congruent triangles
inside the original triangle. Repeat the process with the

remaining triangles over and over again.

If you start with a Pascal's triangle and color the odd
numbers black and leave the even numbers white, it will
result in the Sierpinski Triangle, which is named after the
Polish mathematician Waclaw Sierpinski (1882-1969).
Sierpinski's work included three well known fractals,

including the triangle, carpet and curve fractals.
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& Ry Ry = a,+ b(Ry-Re) + sSMB, + hHML, + rRMW, + ¢.CMA, + e,
Goad R, - Re, = a,+ mTERM, + d,DEF, +e,
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o Fama/French Five-Factor Model For Equities

The Fama/French Five-Factor Model for Equities is an asset pricing
model directed at capturing the market, size, value, profitability and
investment patterns in average stock returns. It was developed in 2014
by Nobel Laureate Eugene Fama and his co-author and colleague
Kenneth French. The model explains between 71% and 94% of the
cross-section variance of expected returns for diversified portfolios of
five factors in equities that include market, size, value, profitability and
investment. It expands on the Capital Asset Pricing Model (1964) and
the Fama/French Three-Factor Model (1993). The Fama/French
Five-Factor Model equation is a time-series regression of a series of
research indexes created by Fama and French that include long-term
historical stock prices of various company characteristics. The
coefficient for each factor (independent variables) indicates the
exposure or tilt to that factor in the portfolio. If the exposure to the five
factors, market (b,), size (s;), value (), profitability (r;) and investment
(c;) capture all variation in expected returns, the alpha intercept a; in
the following equation is zero for all securities and portfolios i.

R,- Ry, =a;+b(RyR;) +sSMB,+ hHML, + rRMW,+ c,CMA, + e,
R; is the return on the portfolio i for period ¢ (dependent variable)
Ry, is the risk-free return
Ry~Ry is the return spread between the capitalization weighted stock
market and cash
SMB, is the return on a diversified portfolio of small stocks minus the
return on diversified portfolio of big stocks (i.e. the size effect)

HML, is the difference between the return on diversified portfolios of
high and low Book to Market stocks (i.e. the value effect)

RMW, is the difference between the returns on diversified portfolios
of stocks with robust and weak profitability

CMA, is the difference between the returns on diversified portfolios of
stocks of low and high investment firms, which Fama/French called
conservative and aggressive

e, is the error term and is a zero-mean residual

Fama/French Two-Factor Model For
Fixed Income

Ri - Ry, = a;+ mTERM, + d.DEF, +e,

The Fama French Two-Factor Model for fixed income aims to explain
average returns on bond portfolios. The model utilizes the Term
(TERM,) and Default (DEF,) risk factors. TERM, is LTG-RF, where
LTG is the monthly percent long-term government bond return and
RF, is the one-month Treasury bill rate, observed at the beginning
of the month. DEF is CB-LTG, where CB is the return on a proxy
for the market portfolio of corporate bonds. e;is the error term and
is a zero-mean residual.

40% Stocks / 60% Bonds Hypothetical
Investment Portfolio

To represent market returns, we selected a hypothetical investment
portfolio of 40% Stocks and 60% Bonds because it is estimated to
have a distribution close to this bell curve. The expected return of the
buyer is also the cost of capital for the seller. For this portfolio, we
assume a standard deviation of 2.0%, a monthly mean return of 0.7%
and a sample size of 600 months.

o Information and Uncertainty

This teeter totter illustrates Eugene Fama’s Efficient Market Hypothesis
which states that prices of securities fully reflect all available
information. The left side of the teeter totter represents all available
information (&) and the right side represents the prices ( P, ) that
millions of willing buyers and sellers have concluded are fair prices
given that information at that time. There is a random and continuous
flow of good news and forecasts and bad news and forecasts which at
any point in time represents the uncertainty of the expected return of
an investment that is held at a constant level of risk, such as the
portfolio of 40% Stocks / 60% Bonds shown. If uncertainty increases
due to bad news, the price must make a proportional adjustment down
so that the expected return remains essentially constant. The opposite
is also true. This teeter totter and bell curve illustration was developed
by Mark T. Hebner and is known as the Hebner Model.



9 Fair Price

The Efficient Market Hypothesis asserts that, in a well organized,
reasonably transparent market, the market price (P,) is generally equal
to or close to the fair value, as investors react quickly to incorporate
new information (&) about relative scarcity, utility, or potential returns
in their bids.

0 Cost of Capital wACC=(E/V * Ke) + (D/V) * Kd

In economics and accounting, the cost of capital is the cost of a
company's funds (both debt and equity), or, from an investor's point of
view "the required rate of return on a company's existing securities." It
is used to evaluate new projects of a company. It is the minimum return
that investors expect for providing capital to the company, thus setting
a benchmark that a new project has to meet.

o f Ry |P)=F(R)
The Random Walk Model ER;u |®:) =ER;)

The Efficient Markets Hypothesis states that the current price (P,) of a
security fully reflects available information ( &), which implies that the
successive price changes, or more usually, successive one-period
returns, are independent. In addition, it assumes that successive
changes, or returns, are identically distributed. Together the two
assumptions constitute the Random Walk Model. Formally, the model
says that: f'(R;.;|$.) =f(R;), which is the usual statement that the
conditional and marginal probability distributions of an independent
random variable are identical. In addition, the density function f' must
be the same for all £. If we assume that the expected return on security
E(R;) is constant over time, we have E(R;,.,|®,) =E(R;).

P -P)+C
Q Investment Return Formula R= ”P‘it

The formula for an investment return/loss (R) is the change in price
(P - P,) plus any dividends or cash paid to the investor during the
period (C), divided by the original price (P,) of the investment.

9 Pascal’s Triangle

Pascal's Triangle is a triangle of numbers that follow the rule of adding
the two numbers above to get the number below. This pattern can
continue endlessly. Blaise Pascal (1623-1662) used the triangle to study
probability theory, as described in his mathematical treatise Traité du
triangle arithmétique (1665). The triangle’s patterns translate to
mathematical properties of the binomial coefficients.

@ Fibonacci Numbers

The sum of the numbers on the diagonal of Pascal's Triangle match the
Fibonacci numbers (Liber Abaci, 1202), where each number in the
sequence is the sum of the previous two numbers: 1, 1, 2, 3, 5, 8, 13, 21,
and so on. The ratios of consecutive Fibonacci numbers (55/34=1.618;
89/55=1.618 and 144/89=1.618) and the dimensions of this Galton Board
approach the Golden Ratio of 1.618.

m Bin Numbers

Bins are numbered so the location of the golden bead can be easily
identified and recorded.

@ Probability Density

The probability density f{x) is the relationship between observations
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and their probability. It defines the probability of occurrence of a
discrete random variable within a particular range of continuous
random variables. These f(x) values assume a normal distribution
with a sigma (o) of 1.

@ Expected Percentages, Beads and Returns
Expected % of outcomes per bin for both beads and returns are
shown just below the bin number, with 20.9% expected in middle
bin (#7). Then the expected # of beads per bin are shown, based
on 6,000 beads. Below that are estimates of the # of monthly
returns expected per bin based on 600 monthly returns for the
40% Stocks / 60% Bonds investment portfolio. Finally, the scale
of expected monthly returns from -7.3% to 8.7% are shown on the
bin dividers, which is expected to include 4 standard deviations of
returns (=99.99% or p * 40), with about 1 monthly return expected
in each tail beyond 4 standard deviations.

@ Bell Curve

The normal distribution, often referred to as the "bell curve”, is the
most widely known and used of all probability distributions. Because
the normal distribution approximates many natural phenomena so
well, it has developed into a standard of reference for numerous
probability problems. Several sets of data follow the normal
distribution, such as the heights of adults, the weights of babies,
classroom test scores, monthly returns of the stock market and the
beads in the Galton Board.

@ Hypothetical Distribution of Monthly Returns

The blue bars printed on the back of the board behind the bell curve
represent a hypothetical distribution of 600 monthly returns of the
40% Stock / 60% Bonds investment portfolio.

@ Number of Beads and Returns

The right Y-axis provides an estimate of the number of beads and
monthly returns that are expected in each bin based on the
normal distribution.

@ Golden Bead @

Among the 1.0 mm steel beads is a 2.2 mm golden bead. This
bead demonstrates a single random outcome.

@ Standard Deviation Line

The standard deviation (¢ ) is a measure of how closely all of the data
points are gathered around the mean ( # ). The shape of a normal
distribution is determined by the mean and the standard deviation.
About 68% of the data (beads) in a bell curve fall within one standard
deviation of the mean. About 95% fall within two standard deviations
and about 99.7% fall within three standard deviations. The standard
deviation ( ¢ ) of this 14-row binomial distribution is 1.87 bead bins.
The 15 bead bins span a range of 8 standard deviations (15/1.87 = 8).

@ X-axis

This scale provides the mean, plus and minus 4 standard deviations
from the mean (p * 40) and the percentage of beads and returns
that are expected to be between the standard deviations.



“The Galton Board is a chilling reminder
that out of wonderful, wild randomness,

order and stability can emerge.”

Our Story

Mark T. Hebner

Beyond. Mathematica was the first fully

Mark T. Hebner
President of Four Pines Publishing, Inc.

is the founder and

Mark's fascination with the Galton Board
was ignited when he saw an Eames Office
Film on the 1964 World's Fair. Charles
Eames built an outdoor 14 1/2-foot-tall
Galton Board for the IBM Exhibit, modeled
after a previous design he had built for
Mathematica: A World of Numbers. . . . and
immersive and

large-scale exhibition produced by the Eames Office. It was

designed for the 1961 opening of a new science wing at the

California Museum of Science and Industry in Los Angeles.

Mark’s first Galton Board was designed and built by the
Oregon Museum of Science and Industry. It was an 8-foot-tall
Galton Board for the lobby of his wealth management and
taxes firm, Index Fund Advisors. Then, along with the help of
Philip Poissant, Jerry Xu, Art Forster, Jackson Lin, and the
Brunson family, he created his first desktop sized Galton
Board that is 7 1/2 inches tall. This is the third evolution of his
boards. It is 12 inches tall and more precisely captures the
concepts of the binomial distribution and Pascal’s Triangle,
along with the many embedded mathematical concepts of
Pascal's Triangle. The Stock Market Edition of this Galton
Board displays and explains elements of market returns,
including the Hebner Model.
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